

Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of Southeast China: Analysis of a typical photochemical episode by Observation-Based Model

4 5

Taotao Liu^{1,2,3}, Youwei Hong^{1,2}, Mengren Li^{1,2}, Lingling Xu^{1,2}, Jinsheng Chen^{1,2*}, Yahui Bian^{1,2}, Chen Yang^{1,2,3}, Yangbin Dan^{1,2}, Yingnan Zhang⁴, Likun Xue^{4*}, Min Zhao⁴, Zhi Huang⁵, Hong Wang⁶

6 7

¹Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences,
 Xiamen, China

10 ²Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China

- ³University of Chinese Academy of Sciences, Beijing, China
- 12 ⁴Environment Research Institute, Shandong University, Jinan, Shandong, China
- 13 ⁵Xiamen Institute of Environmental Science, Xiamen, China
- 14 ⁶Fujian Meteorological Science Institute, Fujian Key Laboratory of Severe Weather, Fuzhou, China
- 15

16 Corresponding authors E-mail: Jinsheng Chen (jschen@jue.ac.cn); Likun Xue (xuelikun@sdu.edu.cn)

17

18 Abstract:

A typical multi-day ozone (O₃) pollution event was chosen to explore the atmospheric oxidation 19 capacity (AOC), OH reactivity, radical chemistry, and O₃ pollution mechanism in a coastal city of 20 Southeast China, with an Observation-Based Model coupled to the Master Chemical Mechanism (OBM-21 MCM). The hydroxyl radical (OH) was the predominant oxidant (91±23%) for daytime AOC, while NO₃ 22 23 radical played an important role for AOC during the nighttime (64±11%). Oxygenated volatile organic compounds (OVOCs, 30±8%), NO₂ (29±8%) and CO (25±5%) were the dominant contributors to OH 24 reactivity, accelerating the production of O₃ and recycling of ROx radicals (ROx=OH+HO₂+RO₂). 25 Photolysis of nitrous acid (HONO, 33±14%), O₃ (25±13%), formaldehyde (HCHO, 20±5%), and other 26 OVOCs (17±2%) were the important primary sources of ROx radicals, which played initiation roles in 27 atmospheric oxidation processes. O3 formation was VOC-sensitive, and controlling emissions of 28 aromatics, alkenes, and long-chain alkanes were benefit for ozone pollution mitigation. Combined with 29 30 regional transport analysis, the reasons for this O₃ episode were the accumulation of local photochemical production and regional transport. The results of sensitivity analysis showed that VOCs were the limiting 31 factor of radical recycling and O₃ formation, and the 5% reduction of O₃ would be achieved by decreasing 32 33 20% anthropogenic VOCs. The findings of this study have significant guidance for emission reduction and regional collaboration on future photochemical pollution control in the relatively clean coastal cities 34 35 of China and similar countries.

37 Keywords: Atmospheric oxidation capacity; Radical chemistry; O₃ formation mechanism; OH reactivity;

- 38 OBM-MCM
- 39

40 1 Introduction

41 Tropospheric ozone (O_3) is mainly produced by photochemical reactions of anthropogenic and 42 natural emitted volatile organic compounds (VOCs) and nitrogen oxides (NOx), and is an important factor resulting in regional air pollution (Zhu et al., 2020; Lu et al., 2018). The elevated O₃ concentrations 43 44 enhance the atmospheric oxidation capacity (AOC) and have harmful effects on global climate change, ecosystems, and human health (Liu et al., 2019a; Fowler et al., 2009). The formation mechanisms of O_3 45 pollution are extremely difficult to figure out, due to the complex types and sources of its precursors 46 47 (Simon et al., 2015). O₃ formation is affected by multiple factors such as temporal & spatial distribution, meteorological conditions, atmospheric oxidation processes and regional transport (Gong and Liao, 2019; 48 Chang et al., 2019). To effectively control the tropospheric O₃ pollution, exploration of the photochemical 49 mechanism and judgment on the control factors of O₃ formation become extremely important for 50 scientific community (Chen et al., 2020; Li et al., 2018). 51

52 The atmospheric oxidation capacity reflects the essential driving force in tropospheric chemistry, and plays an important place in the destruction rates of primary components and production rates of 53 secondary pollutants (Elshorbany et al., 2008). Generally, the AOC levels in the polluted regions are much 54 higher than those at the background sites or remote regions (Geyer et al., 2001; Xue et al., 2016). ROx 55 radicals, including hydroxyl radical (OH), hydro peroxy radical (HO₂) and organic peroxy radical (RO₂), 56 are very important indicators in atmospheric photochemistry and dominate the atmospheric oxidative 57 capacity (Li et al., 2018). Meanwhile, radical chemistry drives the transformation and recycling of O_3 58 through initiating atmospheric oxidation processes (Wang et al., 2020). Among these radicals, the OH 59 radical accounts for the majority of AOC over 90% during the daytime, thus the OH reactivity (i.e., OH 60 loss) indicates the primary contribution of individual pollutant (Wang et al., 2018a; Mao et al., 2010). 61 Hence, atmospheric oxidation capacity, OH reactivity, and radical chemistry are crucial aspects for 62 understanding the complex atmospheric photochemistry processes (Li et al., 2018). For example, the 63 major primary ROx sources are the photolysis reaction of O3, formaldehyde (HCHO), other oxygenated 64 volatile organic compounds (OVOCs), nitrous acid (HONO) and the reactions of O3 with unsaturated 65 VOCs (Volkamer et al., 2010). The dominant ROx sources at some rural sites were O₃ photolysis and O₃ 66 reactions with VOCs (Li et al., 2018; Martinez et al., 2003), and those at many urban sites were HONO 67 68 and OVOCs photolysis (Xue et al., 2016; Liu et al., 2012; Emmerson et al., 2005). For oil and gas field

sites, there were highly abundant VOCs to promote the formations of O₃, and the contribution of OVOCs
photolysis was 2-5 times higher than that in urban areas (Chen et al., 2020; Edwards et al., 2013, 2014).
The HONO photolysis was a very important primary ROx source at the high-altitude or background sites.
(Acker et al., 2001; Jiang et al., 2020).

Current studies of atmospheric O₃ photochemical pollution observations have been conducted at the 73 urban, suburban, rural and remote sites around the world (Smith et al., 2006; Eisele et al., 1997; Kanaya 74 et al., 2001; Hofzumahaus et al., 2009; George et al., 1999; Emmerson et al., 2005; Kanaya et al., 2007; 75 Michoud et al., 2012). In China, O₃ photochemical pollution events have been reported in some megacities, 76 such as Beijing, Shanghai, Guangzhou, and Chengdu (Liu et al., 2012; Tan et al., 2019; Zhu et al., 2020; 77 Wang et al., 2020; Liu et al., 2019b; Ling et al., 2017). Few studies on O₃ photochemical pollution in 78 cities with low O₃ precursor emissions have been reported, and the air quality in these areas usually 79 80 depends on the change of meteorological conditions. The coastal region of Southeast China is influenced by the East Asian monsoon and acts as an important transport path between the Yangtze River Delta (YRD) 81 and the Pearl River Delta (PRD) (Hu et al., 2019; Liu et al., 2020a; Liu et al., 2020b), which is a good 82 83 'laboratory' to further explore O_3 photochemical pollution and formation mechanism with relatively low 84 O₃ precursors and complex meteorological conditions (Zhang et al., 2020b; Hu et al., 2020b).

The Observation-Based Model (OBM) is widely used to investigate O₃-VOCs-NOx relationships 85 and radical chemistry (Wang et al., 2018a; Tan et al., 2019). The O3 sensitivity reveals the non-linear 86 relationship between O3 and its precursors (i.e., VOCs and NOx), which was conducted to investigate O3 87 formation mechanism and control strategies (Wang et al., 2020). The OBM combined with the Master 88 Chemical Mechanism (V3.3.1) (OBM-MCM) has been applied to explore the O₃ photochemical pollution 89 mechanism in different environmental conditions (Chen et al., 2020; Li et al., 2018; Xue et al., 2016; 90 91 Wang et al., 2018). In this study, we chose a typical multi-day O₃ pollution event in the coastal city Xiamen (Fig. S1). Based on the OBM-MCM analyses, the study aims to clarify (1) the pollution characteristics of 92 93 O_3 and its precursors, (2) the atmospheric oxidation capacity and radical chemistry, and (3) the O_3 formation mechanism and sensitivity analysis. The results are expected to enhance the understanding of 94 95 O_3 formation mechanism with low O_3 precursor levels, and provide scientific evidence for O_3 pollution control in the coastal cities. 96

97

98 2 Materials and methods

99 2.1 Study area and field observations

100 Xiamen is a coastal city in the southeast area of China, to the west coast of the Taiwan Strait. The

101 field campaigns were carried out at the Atmospheric Environment Observation Supersite (24.61° N, 102 118.06° E) on the rooftop of around 70 m high building in the Institute of Urban Environment, Chinese 103 Academy of Sciences. The supersite was equipped with complete monitoring instruments, including gas 104 and aerosol species compositions, O₃ precursors, meteorological parameters, and photolysis rate. Criteria 105 air pollutants of O₃, SO₂, NO-NO₂-NO_x, and CO were monitored by commercial instruments TEI 49i, 43i, 42i, and 48i (Thermo Fisher Scientific, USA), respectively. The meteorological parameters of wind 106 107 speed (WS), wind direction (WD), air temperature (T), pressure (P), and relative humidity (RH) were measured by an ultrasonic atmospherium (150WX, Airmar, USA). HONO was measured with an analyzer 108 for Monitoring Aerosols and Gases in Ambient Air (MARGA, ADI 2080, Applikon Analytical B.V., the 109 Netherlands). A gas chromatography-mass spectrometer (GC-FID/MS, TH-300B, Wuhan, CN) was used 110 for atmospheric VOCs concentrations monitoring, involving about 103 species of VOCs with a 1-hour 111 time resolution. Photolysis frequencies were measured by a photolysis spectrometer (PFS-100, Focused 112 Photonics Inc., Hangzhou, China). The photolysis rate constants include J(O¹D), J(NO₂), J(H₂O₂), 113 114 J(HONO), J(HCHO), and $J(NO_3)$. Strict quality assurance and quality control were applied, and the detailed descriptions of the monitoring procedures were documented in our previous studies (Zhang et al., 115 2020b; Wu et al., 2020; Liu et al., 2020a; Liu et al., 2020b; Hu et al., 2020a). 116

117 2.2 Observation-based chemical box model

118 In this study, the Observation-Based Model (OBM) combined with the latest version 3.3.1 of MCM (MCM v3.3.1; http://mcm.leeds.ac.uk/MCM/), involving 142 non-methane VOCs and more than 17000 119 elementary reactions of 6700 primary, secondary and radical species (Jenkin et al., 2003; Saunders et al., 120 121 2003), was used to explore the atmospheric oxidation processes and O_3 formation mechanisms. The physical process of deposition within the boundary layer height (BLH), which varied from 300 m during 122 123 nighttime to 1500 m during the daytime in autumn (Li et al., 2018), was considered in the model. 124 Therefore, the dry deposition velocity was utilized to simulate the deposition loss of some reactants in the atmosphere, which avoided continuous accumulation of pollutant concentrations in the model (Zhang et 125 al., 2003; Xue et al., 2016). 126

The observation data of the gaseous pollutants (i.e., O_3 , CO, NO, NO_2 , HONO, SO_2 , and VOCs), meteorological parameters (i.e., T, P, and RH), and photolysis rate constants ($J(O^1D)$, $J(NO_2)$, $J(H_2O_2)$, J(HONO), J(HCHO), and $J(NO_3)$) were input into the OBM-MCM model as constraints. The photolysis rates of other molecules such as OVOCs were parameterized by solar zenith angle and then scaled by the measured $J(NO_2)$ (Saunders et al., 2003). We pre-ran for 5 days before running the model to initialize the

unmeasured compounds and radicals (Xue et al., 2014).

OBM-MCM is mainly used to simulate in situ atmospheric photochemical processes and quantify 133 the O₃ production rate, AOC, OH reactivity, and ROx radical budgets. Among them, primary sources of 134 ROx, including the photolysis reactions of O₃, HONO, formaldehyde (HCHO), and other OVOCs as well 135 136 as reactions of VOCs with O₃ and NO₃ radicals, are important (Xue et al., 2016). The termination reactions of ROx are controlled by cross-reactions with NOx (under high NOx conditions) and ROx (under low 137 NOx conditions) to form nitric acid, organic nitrates, and peroxides (Liu et al., 2012; Xue et al., 2016). 138 The production rate of O_3 (P(O_3)) includes HO₂+NO and RO₂+NO reactions (Eq. 1), and the destruction 139 of O₃ (D(O₃)) involves reactions of O₃ photolysis, O₃+OH, O₃+HO₂, O₃+VOCs, NO₂+OH, and 140 $NO_3 + VOCs$ (Eq. 2). The net O_3 production rate (Pnet(O_3)) is calculated by $P(O_3)$ minus $D(O_3)$ as equation 141 142 3. 143 $P(O_3) = k_1[HO_2][NO] + \sum (k_{2i}[RO_2][NO])$ (1) $D(O_3) = k_3[O_1D][H_2O] + k_4[O_3][OH] + k_5[O_3][HO_2] + k_6[NO_2][OH] +$ 144 145 $\sum (k_{7i}[O_3][unsat.VOCs]) + 2 \sum (k_{8i}[NO_3][unsat.VOCs])$ (2) $Pnet(O_3) = P(O_3) - D(O_3)$ (3) 146

where *ki* is the related reaction rate constant. Detailed descriptions of the chemistry calculation can be
found elsewhere (Chen et al., 2020; Wang et al., 2018a; Xue et al., 2014).

Relative incremental reactivity (RIR), an index to diagnose the sensitivity of O₃ formation to precursors, is defined as the ratio of the differences in O₃ production rate to the difference in precursor concentrations (Chen et al., 2020). Here, the $\Delta X/X$ in the OBM-MCM represents the percentage reduction in the input concentrations of each targeted O₃ precursor group and this value is adopted as 20% (Liu et al., 2020c).

154
$$RIR = \frac{\Delta P(O_3)/P(O_3)}{\Delta X/X}$$
(4)

155

156 2.3 Meteorological data and back trajectory calculation

The backward trajectories of air masses arriving at the observation site were calculated by the MeteoInfo during the episode (Wang *et al.*, 2014). The backward trajectories with 72-h were run with the time resolution of 3 hours at 100 m height above ground level, and starting time was 0:00 LT and the ending time was 23:00 LT. Meteorological data were provided by NOAA ARL (<u>ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1</u>). The Final Operational Global Analysis data (FNL) is

from the Global Data Assimilation System and analyzes results with the model which is also used by the National Center for Environmental Prediction (NCEP) in the Global Forecast System (GFS) (<u>https://rda.ucar.edu/datasets/ds083.2/</u>). The weather charts were conducted using Grid Analysis and Display System (GrADS) with the specific programmed script files. A detailed description of the synoptic information was shown in our previous study (Wu et al., 2019).

167 **3 Results and discussion**

168 **3.1 Overview of observations**

169 The O₃ pollution events frequently appeared in the coastal city Xiamen during autumn time, related 170 to the West Pacific Subtropical High (WPSH), carrying high temperature, low RH, and stagnant weather conditions, encouraging the formation and accumulation of O₃ in the southeast coastal area (Wang et al., 171 2018a). The daily maximum 8-h-average O₃ concentrations (MDA8h O₃) from 20 to 29 Sep, 2019 ranged 172 173 from 53 to 85 ppby, partly exceeding the Grade II of China's National Ambient Air Quality Standard of 75 ppbv. The time series and descriptive statistics of air pollutants and meteorological parameters during 174 this multi-day O₃ pollution event are shown in Fig. 1 and Table 1. During this period, the dominant wind 175 direction was northeast, with an average wind speed of 1.8 ± 0.9 m s⁻¹. The maximum hourly temperature 176 was as high as 35 °C, and the average RH was 56.4±12.6%. Solar radiation intensity and J(NO₂) were 177 strong, compared to those of the Yellow River Delta (Chen et al., 2020), Shanghai (Zhu et al., 2020) and 178 Hong Kong (Xue et al., 2016). In general, these meteorological parameters were conducive to the 179 production and accumulation of O₃. In addition, O₃ concentrations at nighttime kept relatively high (Fig.1), 180 indicating the influence of regional transport and little NO titration (Zhang et al., 2020a; Wu et al., 2020). 181 Figure S2 shows the 72 h back trajectories at the monitoring site. Among them, 80% of the air masses 182 came from the Yellow Sea, and the other 20% air masses originated from the northeast China through 183 184 long-range transport.

186 Figure 1. Time series of major trace gases, photolysis rate constants, and meteorological parameters during 20-

- 187 29 Sep. 2019 in Xiamen.
- 188

185

189	Table 1. Descriptive statistics	of major trace gases	(ppbv) and meteoro	logical parameters d	luring 20-29 Sep. 2019
-----	---------------------------------	----------------------	--------------------	----------------------	------------------------

-			
Parameters	Mean±SD	Median	Max
MDA8h O3	67.4±17.2	52.6	89.3
TVOCs	17.2±4.8	16.1	38.0
СО	452±77.3	454	641
NO	$1.4{\pm}1.3$	0.8	17.1
NO_2	15.4±6.9	13.6	40.9
SO_2	4.7±0.9	4.6	10.2
T (°C)	27.3±3.21	26.9	35.6
RH (%)	56.4±12.6	56.6	75.0
P (hPa)	1008 ± 4.57	1010	1015
UV (W·m ⁻²)	46.4±1.12	0	51.1
Wind speed (m·s ⁻¹)	1.8 ± 0.9	1.6	3.8
Wind direction (°)	90.8 ± 90.4	45.0	337

190	Table 2. Measured	VOCs concentrations	during 20-29 Sep.	2019 in Xiamen	(Units: pptv)
-----	-------------------	----------------------------	-------------------	----------------	---------------

Chemicals	Mean±SD	Chemicals	Mean±SD
Aromatics	2131±1236	Alkanes	6970±2325
toluene	995±632	ethane	1552±342
m/p-xylene	392±326	propane	1546±608
benzene	236±95	iso-pentane	930±316
o-xylene	154±121	n-butane	844±365
ethylbenzene	138±94	n-dodecane	618±101
styrene	76±65	iso-butane	494±201
1,2,4-trimethylbenzene	75±37	n-pentane	254±157

m-ethyltoluene	16±11	n-hexane	134±184
p-ethyltoluene	10±6	3-methylhexane	116±93
iso-propylbenzene	5±3	n-heptane	104 ± 78
1,3,5-trimethylbenzene	8±6	3-methylpentane	82±48
o-ethyltoluene	8±5	2-methylhexane	67±38
1,2,3-trimethylbenzene	7±5	2-methylpentane	56±46
n-propylbenzene	7±4	2,3-dimethylbutane	54±33
Halocarbons	1951±572	cyclohexane	42±15
dichloromethane	998±392	n-undecane	33±35
1,2-dichloroethane	499±210	n-octane	24±15
chloromethane	294±75	n-nonane	15±13
1,2-dichloropropane	88±34	2,2-dimethylbutane	15±7
bromomethane	47±23	n-decane	14 ± 11
trichloroethene	15±6	Alkenes	1205±464
1,4-dichlorobenzene	9±3	ethene	671±361
OVOCs	4246±1263	propene	207±116
acetone	2802±750	isoprene	171±232
2-butanone	799±430	trans-2-pentene	105±62
2-propanol	343±283	1-butene	16±21
2-methoxy-2-methylpropane	169±97	cis-2-butene	12±12
acrolein	66±22	1-pentene	10±7
4-methyl-2-pentanone	16±15	1,3-butadiene	8±7
2-hexanone	12±3	trans-2-butene	4±4
		Acetylene	674±290

191

192 Table 2 lists the detailed VOCs concentrations during the observation period. Alkanes (6970±2325 pptv) were the predominant components of total VOCs, followed by OVOCs (4246±1263 pptv), 193 aromatics (2131±1236 pptv), halocarbons (1951±572 pptv), alkenes (1205±464 pptv), and acetylene 194 195 $(674\pm290 \text{ pptv})$. The ratio of ethene/ethane (0.4 ± 0.2) was significantly (p<0.05) lower than that in Hong Kong (0.7 ± 0.1) with significant aged air masses, indicating that the high O₃ in Xiamen might be partially 196 attributed to the aged air masses (e.g., transport of air from polluted regions or intense atmospheric 197 oxidation) (Wang et al., 2018a). The concentration of TVOCs in Xiamen (17.2±4.8 ppbv) was much lower 198 than that in the developed areas with large anthropogenic emissions (i.e., Beijing (65.6 ppbv), Hangzhou 199 (55.9 ppbv), Guangzhou (47.3 ppbv), Nanjing (43.5 ppbv), Hong Kong (26.9 ppbv) and Shanghai (29.7 200 ppbv), but was higher than that at the background site (i.e., Mt. Wuyi, 6.1 ppbv) (Li et al., 2019; Hong et 201 al., 2019). Figure S3 shows the contributions of top 10 VOCs species (including alkenes and aromatics) 202 to the total ozone formation potential (OFP), which was calculated by the localized maximum incremental 203 reactivity in China (Zhang et al., 2021). The key VOCs species with the highest OFP was ethene (3.6±2.0 204 μg·m⁻³), m/p-xylene (2.2±1.9 μg·m⁻³), toluene (2.2±1.5 μg·m⁻³), propene (1.3±0.8 μg·m⁻³) and isoprene 205 $(1.3\pm1.7 \ \mu g \cdot m^{-3}).$ 206

207 The O₃ formation process depends on its precursors and related environmental conditions, while the

208 photochemical reactions during the daytime are the basis for O_3 changes. Figure 2 shows the diurnal patterns of major trace gases and meteorological parameters during 20-29 Sep. 2019. The O₃ 209 210 concentration maintained at relatively low levels from night to 07:00 LT, then rose and reached its 211 maximum at around 17:00 LT. O₃ peak in the afternoon was related to the accumulation of both local 212 photochemical reaction and potential regional transport (including O₃ and its precursors in the upwind 213 direction to the observation site), and the detailed analysis will be shown in Section 3.3.2. The reduction 214 of observed O_3 (ΔO_3) in the early morning rush hour caused by NO titration did not appear, verifying the impacts of regional transport (Liu et al., 2019b; Zeren et al., 2019; Chen et al., 2020). The diurnal patterns 215 of VOCs and NOx were similar, with the highest concentrations at around 08:00 LT and then decreasing 216 during 9:00~16:00 LT and increasing at night, which is related to the human activities emissions 217 (including vehicle exhaust and industry emission), photochemical reaction and the variations of boundary 218 layer (Elshorbany et al., 2008; Hu et al., 2020b). 219

220

Figure 2. Average diurnal patterns of major trace gases and meteorological parameters during 20-29 Sep. 2019 in Xiamen. The error bar is the standard error.

223

224 **3.2** Atmospheric oxidation and radical chemistry

225 **3.2.1** Atmospheric oxidation capacity (AOC)

226

Figure 3. Time series of the model-calculated Atmospheric Oxidation Capacity (AOC) in Xiamen during 20-29 Sep. 2019.

Figure 3 shows the time series of the model-calculated AOC during the O₃ pollution period. The 229 AOC determines the removal rate of primary pollutants and the production rate of secondary pollutants, 230 and was the basis for reflecting atmospheric photochemical pollution (Geyer et al., 2001). AOC is 231 calculated as the sum of oxidation rates of various primary pollutants (CO, NOx, VOCs, etc.) by the major 232 oxidants (i.e., OH, O₃, NO₃) (Chen et al., 2020; Xue et al., 2016; Xue et al., 2014). In this study, the 233 average daytime AOC was 10.0×10^7 molecules cm⁻³ s⁻¹, which was comparable to Hong Kong (6.3×10⁷) 234 molecules cm⁻³ s⁻¹), higher than those in Shanghai $(3.5 \times 10^7 \text{ molecules cm}^{-3} \text{ s}^{-1})$ and a rural site of Berlin 235 $(1.4 \times 10^7 \text{ molecules cm}^{-3} \text{ s}^{-1})$, but lower than that in Santiago $(3.2 \times 10^8 \text{ molecules cm}^{-3} \text{ s}^{-1})$ (Li et al., 236 2018; Chen et al., 2020; Xue et al., 2016; Gever et al., 2001; Zhu et al., 2020). The results of AOC 237 characteristics in different regions were decided by the precursor concentrations/types and photochemical 238 239 environment.

240 According to the diurnal patterns of the AOC contributed by OH, O₃, and NO₃, the predominant oxidant was OH (91 \pm 23%) during the daytime, followed by NO₃ (8 \pm 20%) and O₃ (1 \pm 2%). Meanwhile, 241 the diurnal characteristics of AOC were consistent with the profile of the model-calculated OH (Fig. S4) 242 243 and the observed photolysis rate constants (Fig.1) (Zhu et al., 2020). Meanwhile, NO₃ (64±11%) played the most important role in the oxidant capability during the nighttime, followed by OH ($29\pm12\%$) and O_3 244 $(6\pm1\%)$. In particular, the contribution of NO₃ to AOC reached the maximum of 80% at around 18:00 LT, 245 when the concentrations of O₃ and NO₂ were relatively high and accelerated the formation of NO₃ (Fig.2). 246 In addition, solar radiation was woken during the nighttime, which resulted in the accumulation of NO₃ 247 due to the cease of photolysis of NO₃ (Rollins et al., 2012; Chen et al., 2020). AOC contributed by O_3 248 was negligible, owing to the relatively low concentration of alkenes at the monitoring site (Fig.1 and 249 250 Table 2), since O₃ contributed to the oxidation capacity through alkenes ozonolysis (Xue et al., 2016). In

- summary, the OH radical dominated the AOC in Xiamen, and it was necessary to further explore the
- 252 partitioning of OH reactivity among different precursor groups.
- 253

Figure 4. Time series of model-calculated OH reactivity and its partitioning to the major reactants in Xiamen during 20-29 Sep. 2019.

257

254

258

259

The OH reactivity is an indicator for the OH chemical loss frequency, computed as the reaction rates of OH with CO, NOx, SO₂, HONO, HNO₃, HO₂NO₂, and VOCs (Whalley et al., 2016; Chen et al., 2020). Zhu et al. (2020) found that unmeasured species and unknown secondary products contributed considerably to the actual OH reactivity. Time series and diurnal patterns of model-calculated OH reactivity as well as its partitioning to the major reactants during the episode are shown in Fig. 4 and Fig.

5. The OH reactivity reached the peak $(18.6\pm4.8 \text{ s}^{-1})$ at around 8:00 LT, mainly caused by the reaction of 267 OH with NOx, since vehicle exhaust emitted large amounts of NOx during rush hours. The average daily 268 OH reactivity was 14.4 ± 3.83 s⁻¹, which was much lower than those in some polluted regions in Santiago 269 (42 s⁻¹) and the PRD (50 s⁻¹), comparable to that at a rural site in Nashville (11 s⁻¹), but higher than that 270 at a mountain site in Pennsylvania (6 s^{-1}) (Elshorbany et al., 2008; Lou et al., 2010a; Lou et al., 2010b; 271 Kovacs et al., 2003; Ren et al., 2005). Figure 5 shows the diurnal variations and percentage of model-272 273 calculated OH reactivity to the major reactants during the episode. As shown in Fig. 5b, OVOCs (30±8 %) and NO₂ (29 \pm 8%) were the dominant contributors to OH reactivity, followed by CO (25 \pm 5%), alkanes 274 $(5\pm3\%)$, aromatics $(3\pm2\%)$, alkenes $(3\pm1\%)$, and NO $(2\pm4\%)$. The partitioning of OH reactivity elucidated 275 the inherent photochemical processes and major reactants in Southeast China. High OH reactivity of 276 OVOCs, NO2, and CO would promote the production of ROx radical. Therefore, the investigation of 277 detailed chemical budget of the ROx, recycling, and termination reaction is meaningful to figure out the 278 complex atmospheric photochemistry (Li et al., 2018; Lou et al., 2010b). 279

280 3.2.2 Radical chemistry

281

Figure 6. Model-simulated daytime average diurnal variations in (a) OH, HO₂, and RO₂ concentrations, and average primary production rates of (b) OH, (c) HO₂, and (d) RO₂ during 20-29 Sep. 2019 in Xiamen.

With the influence of NOx and VOCs, OH, HO₂, and RO₂ undergo efficient recycling and produce secondary pollutants, such as O₃ and OVOCs (Sheehy et al., 2010). Figure 6 shows the model-simulated OH, HO₂, and RO₂ concentrations and their primary sources. The detailed time series of ROx

concentrations and chemical budget are summarized in Fig. S4. Figure 6a shows the diurnal variations of 287 288 the simulated OH, HO₂, and RO₂. The maximum daily values of OH, HO₂, and RO₂ concentrations were 2.4×10^7 , 7.9×10^8 and 4.7×10^8 molecules cm⁻³, with the daytime average concentrations of 7.4×10^6 , 289 2.4×10^8 and 1.7×10^8 molecules cm⁻³, respectively. Model-predicted concentrations of OH in Xiamen 290 were higher than that in the the Yellow River Delta (an oil field with high VOCs emission), while the 291 concentrations of HO₂ and RO₂ showed a reverse trend (Chen et al., 2020). The ROx recycling of 292 293 $OH \rightarrow RO_2$ was mainly controlled by the reaction of OH+VOCs, and the $RO_2 \rightarrow HO_2$ and $HO_2 \rightarrow OH$ depended on the reactions with NO (Fig.7). Combined with the ratio of VOCs/NOx (1.1 ± 0.4) , it was 294 convinced that NOx would not be the limiting factor in the radical recycling processes. Hence, efficient 295 conversions of radical propagation of $RO_2+NO \rightarrow HO_2$ and $HO_2+NO \rightarrow HO$ were expected, and 296 OH+VOCs→RO2 reaction was the rate-depended step of the radical recycling in our study. The detailed 297 radical chemistry would be further discussed as follows. 298

299 Figure 6b shows the daytime average diurnal variations of primary OH sources. HONO photolysis reached the maximum of 2.7 ppb h^{-1} at around 8:00 LT, which occupied 56±19% of the total OH primary 300 production rates. The second source of OH primary production was O_3 photolysis (42±21%), and the 301 percentages of O₃+VOCs and OVOCs photolysis were minor. The highest HONO photolysis rate 302 303 appeared in the morning rush hour, suggesting the influence from vehicle emissions and nocturnal accumulation of HONO (Hu et al., 2020a). Considering the recycling of radicals, the reaction of HO₂+NO 304 305 $(8.0\pm6.2 \text{ ppb h}^{-1})$ dominated the total production of OH (Fig. S4a). Meanwhile, OH-initiated oxidations of VOCs (4.9±3.3 ppb h⁻¹) consumed OH most during the daytime, followed by OH+CO (2.6±1.9 ppb 306 307 h^{-1}), OH+NO₂ (2.4±1.1 ppb h^{-1}), OH+NO (0.6±0.3 ppb h^{-1}), and OH+O₃ (0.2±0.1 ppb h^{-1}).

In this study, HCHO photolysis was identified as the most important source for HO₂ primary formation, with an average production rate of 1.1 ± 0.6 ppb h⁻¹ (Fig.6c), followed by the other OVOCs photolysis (0.4±0.2 ppb h⁻¹). The rate of OVOCs photolysis in Xiamen was much lower than that in some megacities, such as Beijing (Liu et al., 2012) and Hong Kong (Xue et al., 2016). The reaction of OH+CO (2.6±2.2 ppb h⁻¹) and RO₂+NO (2.5±1.5 ppb h⁻¹) were also important sources of HO₂ (Fig. S4b). The main sinks of HO₂ were HO₂+NO (7.9±6.2 ppb h⁻¹), while HO₂+HO₂ and HO₂+RO₂ were negligible.

In Fig. 6d, OVOCs photolysis contributed most to primary RO₂ production with a rate of 0.5 ± 0.2 ppb h⁻¹, accounting for $85\pm20\%$ of total RO₂ primary production. The reactions of unsaturated VOCs and NO₃ were the second important source, accounting for $11\pm18\%$ of the total primary RO₂. The radical

recycling rate of OH+VOCs was 8.4 times higher than the sum of RO₂ primary production. The consumption reaction of RO₂ was mainly caused by RO₂+NO (3.7 ± 2.9 ppb h⁻¹), and the cross-reactions by ROx themselves were limited.

The daytime average ROx budget and its recycling were also demonstrated (Fig. 7). For the ROx primary sources, the photolysis of HONO ($33\pm14\%$), O₃ ($25\pm13\%$), HCHO ($20\pm5\%$) and other OVOCs ($17\pm2\%$) were the major contributors. For ROx recycling, CO and VOCs reacted with OH producing HO₂ and RO₂ with the average rate of 4.0 and 4.4 ppbv h⁻¹, respectively. RO₂+NO and HO₂+NO enhanced the production of RO (3.6 ppbv h⁻¹) and OH (7.9 ppbv h⁻¹), with O₃ formed as a by-product. For the termination processes, the reactions of ROx with NOx were approximately 2-5 times faster than the crossreactions of ROx.

328

329 Figure 7. Daytime ROx budget during 20-29 Sep. 2019 in Xiamen. The unit is parts per billion per hour. The blue,

330 black, and green lines and words indicate the production, destruction, recycling pathways of radicals, respectively.

331 3.3 O₃ formation mechanism

333

Figure 8. Time series of model-simulated O₃ chemical budgets during 20-29 Sep. 2019 in Xiamen.

The in situ O₃ production mechanism was examined, and the detailed reaction weights are shown in 336 Fig. 8. The daytime rate of HO₂+NO was 7.9 ± 6.2 ppb h⁻¹, accounting for $68\pm4\%$ of the total O₃ production. 337 338 This result was consistent with that in section 3.2.2. The OH radical was the initiator of photochemical 339 O₃ formation, and the main sources of OH from HO₂+NO was also the dominant pathway to produce O₃ (Liu et al., 2020c). The second pathway of O₃ production was RO₂+NO (3.6 ± 2.0 ppb h⁻¹). The reaction 340 341 of RO₂+NO contained more than 1000 types of RO₂ radicals, and the pathway of CH₃O₂+NO ($34\pm6\%$) contributed the most among them. In contrast, the contributors of O_3 destruction were OH+NO₂ (61±18%), 342 followed by O_3 photolysis (18±9%), RO_2 + NO_2 (9±10%), O_3 + HO_2 (4±4%), and O_3 +OH (4±2%), while 343 the other pathways of O_3 +VOCs as well as NO₃+VOCs, contributed limitedly. In addition, the net O_3 344 production (9.1±5.7 ppb h⁻¹) in Xiamen was ~2-5 times lower than that derived from the metropolis of 345 Shanghai (26 ppb h^{-1}), Lanzhou (23 ppb h^{-1}) and Guangzhou (50 ppb h^{-1}), reflecting the influence of O₃ 346 precursors emissions and photochemical conditions (Xue et al., 2014). 347

348

Figure 9. The model-calculated RIRs for (a) major O₃ precursor groups and (b) the AHC sub-groups during high
 O₃ daytime (06:00-18:00 LT) (AHC: anthropogenic hydrocarbons; BHC: biogenic hydrocarbons; RAROM:
 aromatics except for benzene; LRHC: low reactivity hydrocarbons; C4HC: alkenes, and alkanes with ≥4 carbons).

In this study, we also calculated the relative incremental reactivity (RIR) to diagnose the sensitivity 352 353 of O₃ formation to its precursors. Figure 9 shows the RIR values for major groups of O₃ precursors. 354 Around 50 types of VOCs were classified as anthropogenic hydrocarbons (AHC), and the isoprene was categorized into biogenic hydrocarbons (BHC), with AHC further divided into four groups of reactive 355 356 aromatics (RAROM, including aromatics except for benzene), low reactivity hydrocarbons (LRHC, including methane, ethane, acetylene, propane, and benzene), alkenes, and alkanes with ≥ 4 carbons 357 (C4HC). The in situ O₃ production was highly VOCs-sensitive, especially for AHC-sensitive 358 359 (0.63–1.02 %/%) (Fig. 9a), followed by CO (0.17–0.27 %/%) and BHC (0.14–0.26 %/%), indicating the impacts from anthropogenic activities and flourishing vegetation emissions (Liu et al., 2020a; Lin et al., 360 2020). The RIRs were NOx-negative ranging from -0.70 to -0.08. As shown in Fig. 9b, the contributors 361 of AHC sub-groups to RIRs were RAROM (0.24-0.46 %/%), C4HC (0.17-0.30 %/%), alkenes 362 (0.11–0.32 %/%), and LRHC (0.03–0.04 %/%). Therefore, the reduction of aromatics, alkenes, and longer 363 alkanes effectively decreased O₃ production, and the reduction of NOx might aggravate O₃ pollution. 364

365

Figure 10 (a) Isopleth diagrams of modeled O₃ production potential (C(O₃)) on S(VOCs) and S(NOx) remaining percentages (i.e., (S(VOCs)-S(VOCs))/(S(VOCs)) and (S (NOx)-S(NOx))/(S(NOx)); (b) Relationship of C(O₃) increment percentage (Δ C(O₃)/C(O₃)) with S(NOx) and S(VOCs) reduction percentages (Δ S(NOx)/S(NOx) and Δ S(VOCs)/S(VOCs)). Note: C(O₃), S(NOx), and S(NOx) represent the concentrations of corresponding pollutants.

371 In order to investigate the O_3 control strategies in the relatively clean coastal city, the scenario analysis with reduction by 0-100% at intervals of 5% for the reduction of anthropogenic VOCs 372 373 $(\Delta S(VOCs)/S(VOCs))$ and NOx $(\Delta S(NOx)/S(NOx))$ were conducted using the OBM-MCM. According 374 to the Empirical Kinetic Modeling Approach (EKMA) and scenario analysis, O₃ formation was in the 375 NO-titration regime (Fig. 10), in accordance with those of RIR analysis. The maximum value of MDA8h O_3 during the monitoring period was 85 ppbv, exceeding the national air quality standard of 75 ppbv for 376 O_3 by 13%. Hence, the O_3 reductions of 5%, 10%, and 15% were set to discuss the reduction schemes of 377 anthropogenic VOCs and NOx. As shown in Fig. 10b, achieving the 5% control target were 1) S(VOCs) 378 is reduced by 15%, while S(NOx) remains unchanged; 2) S(VOCs) is reduced larger than 35%; 3) S(NOx) 379 reduction is higher than 60%. In addition, the 10% of O₃ control target was achieved by the 45% reduction 380 of S(VOCs), and the S(NOx) keeps original emission. In view of the long-term control strategy of NOx 381 382 and VOCs, S(VOCs) reduced by 55% and 80% could decrease 10% and 15% O₃ concentrations, respectively. Although VOCs and NOx control measures were drastically implemented, it is still 383 challenging to achieve the 15% O₃ control goals in urban areas with relatively low precursor emissions. 384 Meanwhile, as the O₃ sensitivity changed under the implementation of control measures, it is necessary 385 386 to adjust timely the reduction of VOC and NOx policies.

387 **3.3.2** O₃ from local photochemical production and regional transport

388

Figure 11. O₃ accumulation and contributions from local photochemical production and regional transport, and
 Rchem, Rtran, and Rmeas in figure caption represent local O₃ photochemical production, regional transport and
 observed O₃ formation rate, respectively.

Previous studies have found that the variation of O₃ mixing ratios was mainly influenced by chemical 392 and physical processes (Xue et al., 2014; Tan et al., 2018). Figure 11 shows the time series of O_3 393 accumulation and contributions from local photochemical production and regional transport. The 394 395 observed rate of change in O₃ (Rmeas) was calculated by the derivative of the observed O₃ concentrations (Rmeas= $d(O_3)/dt$). The local O₃ production (Rchem) was calculated by Equation 3, and computed hourly 396 397 by the OBM as described in Section 2.2. The regional transport (Rtran) was calculated by the equation of Rtran=Rmeas-Rchem, including horizontal and/or vertical transport, deposition and so on. The positive 398 399 values of Rtran represented the O₃ import of regional transport, while the negative values indicated the O₃ export and deposition. We quantified the contributions of local photochemical formation and regional 400 401 transport to the observed O₃, and figured out the reasons for the O₃ pollution process.

402 As shown in Fig. 11, two regular O₃ import phenomenon with positive values of Rtran were observed, and the curve of the Rmeas showed the "M" trend during the daytime. The first transient intense O_3 import 403 404 happened in the early morning, which was mainly attributed to the residual ozone from the day before. The O_3 export was remarkable at around 10:00-15:00, indicating the potential impacts on air quality in 405 406 downwind areas. When the near-surface wind direction changed from northeast to southeast, the second O₃ import phenomenon occurred in the afternoon (16:00-19:00 LT) in four days (20, 25 27 and 29 Sep.). 407 408 Due to the Rtran in the afternoon, the daily maximum O₃ values appeared at around 17:00 LT. However, 409 the maximum daily value of O_3 at this observation site generally appeared at around 15:00 LT without regional transport (Wu et al., 2019). Under the conditions of southeast wind direction, downtown area 410 411 with high density vehicles would make O₃ and its precursors transmitting to our observation site, 412 consistent with the diurnal patterns of NO₂, OVOCs, alkanes, and aromatic in the early morning and

afternoon (Fig. 2) to match with the "M" trend of Rmeas. This result indicated that the sudden changesof near-surface winds corresponding to the variation in the transport of the urban plume.

According to photochemical parameters including UV, JNO₂, JO¹D and the synoptic situations (Fig. 415 1, Fig. S5 and Fig.12), the environmental conditions also favored the O_3 pollution process during the 416 observation periods. The contribution of Rchem (daily maximum: ranged from 10.2 to 19.1 ppb h^{-1}) 417 during the daytime was observed (Fig.11). In Fig. S5abc, the monitoring site was continuously affected 418 by the northerly O₃ polluted airflow from YRD, due to the typhoon 'Tapah' from 20 to 22 Sep. 2019. The 419 transport of O₃ import appeared on 21 Sep. (7.1 \pm 7.0 ppb h⁻¹), which resulted in the accumulation of O₃ 420 (the MDA8h O₃: 85 ppbv) on 22 Sep. When the influence of typhoon disappeared, the direction of airflow 421 422 turned from northerly into southwest with humid and warm at 500hPa (Fig. S5d), the surface wind on Sep. 23 was affected by the control of the cold northerly airflow (Fig. S5ef). Meteorological conditions 423 424 including continental high pressure during 23 to 27 Sep. were favorable to the accumulation of air pollutants (Fig. 12). The isoline of 5880 gpm moved from north to the Yangtze River (Fig. 12a,b), 425 426 indicating the subtropical high pressure was significantly strengthened during 23-27 Sep. 2019. As a result, meteorological conditions such as high temperature, low RH, strong solar radiation, and weak wind speed 427 428 were conducive to the formation and accumulation of O_3 . The transport rate of O_3 export (5.4 \pm 3.4 ppb h^{-1}) on 24-26 Sep. was lower than that on other days (6.3±4.0 ppb h^{-1}). Hence, under the combined effects 429 430 of stable atmospheric conditions and strengthened WPSH, the MDA8h O₃ exceeded the standard of 75 431 ppbv during 24-26 Sep. Previous studies had found that severe multi-day O₃ pollution appeared under the WPSH control (Wang et al., 2018a). Overall, the results indicate that local photochemical production and 432 433 synoptic situations caused high O₃ concentrations, and regional transport aggravated the O₃ pollution 434 process.

435

436

Figure 12. Synoptic situations of continental high pressure from 20 to 29 Sep. 2019. The gradient color area indicates the WPSH over the map and the contour line was from the characteristic isoline of 5880 gpm to the

439 center isoline of 5920 gpm. The blue square is the study site.

440

441 4 Conclusions

442 In the present study, we analyzed a typical high O₃ event during 20-29 Sep. 2019 in a coastal city of Southeast China. We clarified the characteristics of AOC, OH reactivity, and radical chemistry, as well as 443 O3 formation mechanisms using the OBM-MCM model. The predominant oxidant for AOC during the 444 daytime and nighttime was the OH and NO₃, respectively. During the period of O₃ pollution process, 445 446 OVOCs, NO2, and CO consumed OH most. Meanwhile, the photolysis of HONO, O3, HCHO, and other OVOCs were the most important primary sources of ROx, which played the initiation roles in atmospheric 447 oxidation processes. The radical termination reactions were governed by cross-reactions between ROx 448 449 and NOx. The RIRs and EKMA results showed that the O3 formation in autumn in coastal city was VOCs-450 sensitive, and the VOCs were the limited factor of radical recycling and O_3 formation. The reduced emissions of aromatics, alkenes, and long-chain alkanes were benefit for ozone pollution control. The 451 local photochemical production and synoptic situations caused the high concentrations of O₃, and the 452 regional transport aggravated the pollution of ozone. Overall, the results clarified the O3 pollution process 453 with relatively low local precursor emissions, and implied the fact that O₃ pollution control in coastal 454 455 cities needs to be further studied.

456

457

458 Authorship Contribution Statement

Taotao Liu and Youwei Hong contributed equally to this work. Jinsheng Chen and Likun Xue designed and revised the manuscript. Taotao Liu collected the data, contributed to the data analysis. Taotao Liu and Youwei Hong performed chemical modeling analyses of OBM-MCM and wrote the paper. Jinsheng Chen supported funding of observation and research. Lingling Xu, Mengren Li, Chen Yang, Yangbin Dan, Yingnan Zhang, and Min Zhao contributed to discussions of results. Zhi Huang and Hong Wang provided meteorological conditions in Xiamen.

465

466 Acknowledgment

This study was funded by the Cultivating Project of Strategic Priority Research Program of Chinese Academy of Sciences (XDPB1903), the FJIRSM&IUE Joint Research Fund (RHZX-2019-006), the Center for Excellence in Regional Atmospheric Environment, CAS (E0L1B20201), the Xiamen Youth Innovation Fund Project (3502Z20206094), the foreign cooperation project of Fujian Province (2020I0038) and Xiamen Atmospheric Environment Observation and Research Station of Fujian Province.

472

Reference: 473

- 474 Acker, K., Möller, D., Wieprecht, W., Auel, R., Kalaß, D., and Tscherwenka, W.: Nitrous and nitric acid measurements inside and outside of clouds at Mt. Brocken, Water Air Soil Pollut., 130, 331-336, 2001. 475
- 476 Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the Western Pacific Subtropical High
- and the related ozone pollution in Shanghai, China, Sci Rep, 9, 16998, 10.1038/s41598-019-53103-7, 2019. 477
- 478 Chen, T., Xue, L., Zheng, P., Zhang, Y., Liu, Y., Sun, J., Han, G., Li, H., Zhang, X., Li, Y., Li, H., Dong, C., Xu, F.,
- 479 Zhang, Q., and Wang, W.: Volatile organic compounds and ozone air pollution in an oil production region in
- 480 northern China, Atmos. Chem. Phys., 20, 7069-7086, 10.5194/acp-20-7069-2020, 2020.
- 481 Edwards, P. M., Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., Degouw, J. A., Dubé, W. P., Field, R. A.,
- 482 Flynn, J. H., Gilman, J. B., and Graus, M.: High winter ozone pollution from carbonyl photolysis in an oil and gas
- 483 basin, Nature, 514, 351, https://doi.org/10.1038/nature13767, 2014.
- 484 Edwards, P. M., Young, C. J., Aikin, K., deGouw, J., Dubé, W. P., Geiger, F., Gilman, J., Helmig, D., Holloway, J.
- 485 S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D. D., Peischl, J., Roberts, J. M., Ryerson, T. B.,
- 486 Thornton, J., Warneke, C., Williams, E. J., and Brown, S. S.: Ozone photochemistry in an oil and natural gas
- 487 extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys.,
- 13, 8955-8971, https://doi.org/10.5194/acp13-8955-2013, 2013. 488
- 489 Eisele, F. L., Mount, G. H., Tanner, D., Jefferson, A., Shetter, R., Harder, J. W., and Williams, E. J.: Understanding the production and interconversion of the hydroxyl radical during the Tropospheric OH Photochemistry Experiment, 490 491 J. Geophys. Res., 102, 6457-6465, 1997.
- Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, 492
- 493 M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257-2273, https://doi.org/10.5194/acp-9-2257-2009, 2009.
- 494
- 495 Emmerson, K. M., Carslaw, N., and Pilling, M. J.: Urban Atmospheric Chemistry During the PUMA Campaign 2: Radical Budgets for OH, HO2 and RO2, J. Atmos. Chem., 52, 165-183, 10.1007/s10874-005-1323-2, 2005. 496
- 497 Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S.,
- 498 Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J.,
- 499 Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P.,
- 500 Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.
- 501 N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal,
- 502 P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-
- 503 Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and
- 504 Erisman, J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43,
- 505 5193-5267, 10.1016/j.atmosenv.2009.07.068, 2009.
- 506 George, L. A., Hard, T. M., and O'Brien, R. J.: Measurement of free radicals OH and HO2 in Los Angeles smog, J. 507 Geophys. Res., 104, 11643-11655, 1999.
- 508 Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.: Chemistry and oxidation capacity of the 509 nitrate radical in the continental boundary layer near Berlin, J. Geophys. Res., 106, 8013-8025, 510 10.1029/2000jd900681, 2001.
- 511 Gong, C., and Liao, H.: A typical weather pattern for the ozone pollution events in North China, Atmos. Chem.

- 512 Phys., 10.5194/acp-2019-263, 2019.
- 513 Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Holland, F., Kita, K.,
- 514 Kondo, Y., Li, X., Lou, S. R., Shao, M., Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal
- 515 in the Troposphere, Science, 324, 1702–1704, 2009.
- 516 Hong, Z., MengzeLi, HongWang, LinglingXu, Hong, Y., Chen, J., Chen, J., Zhang, H., Zhang, Y., Wu, X., Hu, B.,
- 517 and Li, M.: Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and
- two urban sites in the southeast of China, Sci Total Environ, 10.1016/j.scitotenv.2018.12.132, 2019.
- 519 Hu B, Liu T, Yang Y, Hong Y, Li M, Xu L, Wang H, Chen N, Wu X, Chen J: Characteristics and Formation
- 520 Mechanism of Surface Ozone in a Coastal Island of Southeast China: Influence of Sea-land Breezes and Regional
- 521 Transport. Aerosol Air Qual. Res., 19(8):1734-1748, 2019.
- 522 Hu, B., Duan, J., Hong, Y., Xu, L., Li, M., Bian, Y., Qin, M., Fang, W., Xie, P., and Chen, J.: Exploration of the
- 523 atmospheric chemistry of nitrous acid in a coastal city of southeastern China: Results from measurements across
- four seasons, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-880, 2020a.
- 525 Hu, B., Liu, T., Hong, Y., Xu, L., Li, M., Wu, X., Wang, H., Chen, J., and Chen, J.: Characteristics of peroxyacetyl
- nitrate (PAN) in a coastal city of southeastern China: Photochemical mechanism and pollution process, Sci Total
 Environ, 719, 137493, 10.1016/j.scitotenv.2020.137493, 2020b.
- 528 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical
- Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem.
 Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
- Jiang Y, Xue L, Gu R, Jia M, Zhang Y, Wen L, Zheng P, Chen T, Li H, Shan Y et al: Sources of nitrous acid (HONO)
- 532 in the upper boundary layer and lower free troposphere of the North China Plain: insights from the Mount Tai
- 533 Observatory. Atmos. Chem. Phys., 20(20):12115-12131, 2020.
- Kanaya, Y., Cao, R. Q., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa,
 N., and Kondo, Y.: Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO₂ radical
- concentrations during the winter and summer of 2004, J. Geophys. Res., 112, D21312, doi:10.1029/2007JD008670,
 2007.
- 538 Kanaya, Y., Matsumoto, J., Kato, S., and Akimoto, H.: Behavior of OH and HO₂ radicals during the Observations
- at a Remote Island of Okinawa (ORION99) field campaign 2. Comparison between observations and calculations,
 L. Geophys. Res. 106, 24200, 24223, 2001.
- 540 J. Geophys. Res., 106, 24209–24223, 2001.
- 541 Kovacs, T. A., Brune, W. H., Harder, H., Martinez, M., Simpas, J. B., Frost, G. J., Williams, E., Jobson, T., Stroud,
- C., Young, V., Fried, A., and Wert, B.: Direct measurements of urban OH reactivity during Nashville SOS in summer 1999, J. of Environ. Monitor., 5, 68-74, 10.1039/b204339d, 2003.
- Li, B., Ho, S. S. H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., and Zhao, D.: Characterization of VOCs and
 their related atmospheric processes in a central Chinese city during severe ozone pollution periods, Atmos. Chem.
 Phys., 19, 617-638, 10.5194/acp-19-617-2019, 2019.
- Li, N., He, Q., Greenberg, J., Guenther, A., Cao, J., & Wang, J., Liao H., Zhang Q.: Impacts of biogenic and
 anthropogenic emissions on summertime ozone formation in the Guanzhong Basin, China, Atmos. Chem. Phys.,
 2018a.
- 550 Li, Z., Xue, L., Yang, X., Zha, Q., Tham, Y. J., Yan, C., Louie, P. K. K., Luk, C. W. Y., Wang, T., and Wang, W.:
- 551 Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China, Sci Total Environ, 612, 1114-1122,
- 552 10.1016/j.scitotenv.2017.08.310, 2018.

- Lin, H., Wang, M., Duan, Y., Fu, Q., Ji, W., Cui, H., Jin, D., Lin, Y., and Hu, K.: O₃ Sensitivity and Contributions
 of Different NMHC Sources in O₃ Formation at Urban and Suburban Sites in Shanghai, Atmosphere, 11, 295,
- 555 10.3390/atmos 11030295, 2020.
- Ling, Z., Zhao, J., Fan, S., and Wang, X.: Sources of formaldehyde and their contributions to photochemical O₃
 formation at an urban site in the Pearl River Delta, southern China, Chemosphere, 168, 1293-1301,
 10.1016/j.chemosphere. 2016.11.140, 2017.
- 559 Liu, J., Wang, L., Li, M., Liao, Z., Sun, Y., Song, T., Gao, W., Wang, Y., Li, Y., Ji, D., Hu, B., Kerminen, V.-M.,
- 560 Wang, Y., and Kulmala, M.: Quantifying the impact of synoptic circulation patterns on ozone variability in northern
- 561 China from April to October 2013–2017, Atmos. Chem. Phys., 19, 14477-14492, 10.5194/acp-19-
- 562 14477-2019, 2019a.
- Liu, T., Hu, B., Xu, X., Hong, Y., Zhang, Y., Wu, X., Xu, L., Li, M., Chen, Y., Chen, X., and Chen, J.: Characteristics
- of PM_{2.5}-bound secondary organic aerosol tracers in a coastal city in Southeastern China: Seasonal patterns and
- 565 pollution identification, Atmos. Environ., 237, 117710, 10.1016/j.atmosenv. 2020.117710, 2020a.
- 566 Liu, T., Hu, B., Yang, Y., Li, M., Hong, Y., Xu, X., Xu, L., Chen, N., Chen, Y., Xiao, H., and Chen, J.: Characteristics
- and source apportionment of PM_{2.5} on an island in Southeast China: Impact of sea-salt and monsoon, Atmos. Res.,
- 568 235, 104786, 10.1016/j.atmosres.2019.104786, 2020b.
- Liu, X., Lyu, X., Wang, Y., Jiang, F., and Guo, H.: Intercomparison of O₃ formation and radical chemistry in the
 past decade at a suburban site in Hong Kong, Atmos. Chem. Phys., 19, 5127-5145, 10.5194/acp-19-5127-2019,
 2019b.
- Liu, X., Wang, N., Lyu, X., Zeren, Y., Jiang, F., Wang, X., Zou, S., Ling, Z., and Guo, H.: Photochemistry of ozone
 pollution in autumn in Pearl River Estuary, South China, Sci Total Environ, 754, 141812,
 10.1016/j.scitotenv.2020.141812, 2020c.
- Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A.,
 Costabile, F., Chang, C., and Liu, S.: Summertime photochemistry during CARE Beijing-2007:
 RO<sub>x</s ub> budgets and O< sub>3</sub> formation, Atmos. Chem. Phys., 12, 77377752, 10.5194/acp-12-7737-2012, 2012.
- Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Haeseler, R., Kita, K.,
 Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH
 reactivities in the Pearl River Delta China in summer 2006: measurement and model results, Atmos. Chem. Phys.,
 10, 11243-11260, 10.5194/acp-10-11243-2010, 2010a.
- Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C., Fuchs, H., Häseler, R., Kita, K., Kondo,
- 584 Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH reactivities
- 585 in the Pearl River Delta China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243-
- 586 11260, 10.5194/acp-10-11243-2010, 2010b.
- Lu, X., Hong, J., Zhang, L., Copper. O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M., Zhao, Y., Zhang, Y. Severe
 Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett., 5, 487-494, 2018.
- 589 Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B., Flynn,
- 590 J., and Leuchner, M.: Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer
- measurements in other metropolitan studies, Atmos. Environ., 44, 4107-4115, 10.1016/j.atmosenv.2009.01.013,
- 592 2010.
- 593 Martinez, M.: OH and HO₂ concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville,

- 594 Tennessee, summer 1999, J. Geophys. Res., 108, 10.1029/2003jd003551, 2003.
- 595 Mazzuca, G. M., Ren, X., Loughner, C.P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A. J., Dickerson,
- 596 R. R.: Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVER-AQ field experiment,
- 597 Houston 2013. Atmos. Chem. Phys. 16, 14463–14474, 2016.
- 598 Michoud, V., Kukui, A., Camredon, M., Colomb, A., Borbon, A., Miet, K., Aumont, B., Beekmann, M., Durand-
- Jolibois, R., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Locoge, N., Sauvage, S., Afif, C., Gros, V., Furger, M.,
- Ancellet, G., and Doussin, J. F.: Radical budget analysis in a suburban European site during the MEGAPOLI
- 601 summer field campaign, Atmos. Chem. Phys., 12, 11951-11974, 10.5194/acp-12-11951-2012, 2012.
- 602 Ren, X., Brune, W. H., Cantrell, C. A., Edwards, G. D., Shirley, T., Metcalf, A. R., and Lesher, R. L.: Hydroxyl and
- 603 peroxy radical chemistry in a rural area of Central Pennsylvania: Observations and model comparisons, J. Atmos.
- 604 Chem., 52, 231-257, 10.1007/s10874-005-3651-7, 2005.
- 605 Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., Goldstein, A. H., Liu,
- 606 S., Day, D. A., Russell, L. M., and Cohen, R. C.: Evidence for NOx Control over Nighttime SOA Formation,
- 607 Science, 337, 1210–1212, 2012.
- 608 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master
- 609 Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of nonaromatic volatile organic compounds,
 610 Atmos. Chem. Phys., 3, 161–180, doi:10.5194/acp-3-161-2003, 2003.
- 611 Sheehy, P. M., Volkamer, R., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico City atmosphere
- 612 Part 2: A RO<sub>x</sub> radical cycling perspective, Atmos. Chem. Phys., 10, 6993-7008,
- 613 10.5194/acp-10-6993-2010, 2010.
- Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the United States over a period of
 decreasing NOx and VOC emissions, Environ. Sci. Technol., 49, 186-195, 10.1021/es504514z, 2015.
- Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T., and Heard, D. E.: Concentrations of OH and HO₂
 radicals during NAMBLEX: measurements and steady state analysis, Atmos. Chem. Phys., 6, 1435–1453,
 doi:10.5194/acp-6-1435-2006, 2006.
- 619 Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., and Zhang, Y.: Exploring ozone pollution
- in Chengdu, southwestern China: A case study from radical chemistry to O₃-VOC-NOx sensitivity, Sci Total
 Environ, 636, 775-786, 10.1016/j.scitotenv.2018.04.286, 2018.
- 622 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie,
- 623 S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities during the 624 photochemically polluted season: a case study based on box model simulation, Atmos. Chem. Phys., 19, 3493-
- 625 3513, 10.5194/acp-19-3493-2019, 2019.
- Volkamer, R., Sheehy, P., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico City atmosphere –
 Part 1: A radical source perspective, Atmos. Chem. Phys., 10, 6969-6991, 10.5194/acp-10-6969-2010, 2010.
- 628 Wang, H., Lyu, X., Guo, H., Wang, Y., Zou, S., Ling, Z., Wang, X., Jiang, F., Zeren, Y., Pan, W., Huang, X., and
- Shen, J.: Ozone pollution around a coastal region of South China Sea: interaction between marine and continental
 air, Atmos. Chem. Phys., 18, 4277–4295, 10.5194/acp-18-4277-2018, 2018a.
- Wang, H., Tan, S., Wang, Y., Jiang, C., Shi, G., Zhang, M., Che, H.: A multisource observation study of the severe
 prolonged regional haze episode over eastern China in January 2013. Atmos. Environ. 89, 807–815, 2014.
- 633 Wang, M., Chen, W., Zhang, L., Qin, W., Zhang, Y., Zhang, X., and Xie, X.: Ozone pollution characteristics and

- sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China, J Environ
 Sci (China), 93, 13-22, 10.1016/j.jes.2020.02.027, 2020.
- 636 Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H., and Zeren, Y.: Surface O₃ photochemistry over the South
- 637 China Sea: Application of a near-explicit chemical mechanism box model, Environ Pollut, 234, 155-166,
- 638 10.1016/j.envpol.2017.11.001, 2018b.
- 639 Whalley, L. K., Stone, D., Bandy, B., Dunmore, R., Hamilton, J. F., Hopkins, J., Lee, J. D., Lewis, A. C., and Heard,
- 640 D. E.: Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone
- 641 production, Atmos. Chem. Phys., 16, 2109-2122, 10.5194/acp-16-2109-2016, 2016.
- 642 Wu, X., Li, M., Chen, J., Wang, H., Xu, L., Hong, Y., Zhao, G., Hu, B., Zhang, Y., Dan, Y., and Yu, S.: The
- 643 characteristics of air pollution induced by the quasi-stationary front: Formation processes and influencing factors,
- 644 Sci Total Environ, 707, 136194, 10.1016/j.scitotenv.2019.136194, 2020.
- 645 Wu, X., Xu, L., Hong, Y., Chen, J., Qiu, Y., Hu, B., Hong, Z., Zhang, Y., Liu, T., Chen, Y., Bian, Y., Zhao, G., Chen,
- 646 J., and Li, M.: The air pollution governed by subtropical high in a coastal city in Southeast China: Formation
- processes and influencing mechanisms, Sci Total Environ, 692, 1135-1145, 10.1016/j.scitotenv.2019.07.341, 2019.
- 648 Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo,
- 649 H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport
- and heterogeneous processes, Atmos. Chem. Phys., 14, 13175-13188, 10.5194/acp-14-13175-2014, 2014.
- 51 Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z.,
- Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical chemistry in the polluted
- atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode, Atmos.
- 654 Chem. Phys., 16, 9891–9903, 10.5194/acp-16-9891-2016, 2016.
- Ess Zeren, Y., Guo, H., Lyu, X., Jiang, F., Wang, Y., Liu, X., Zeng, L., Li, M., and Li, L.: An Ozone "Pool" in South
- China: Investigations on Atmospheric Dynamics and Photochemical Processes Over the Pearl River Estuary, J.
 Geophys. Res., 124, 12340-12355, 10.1029/2019jd030833, 2019.
- Zhang L , Brook J R , Vet R . A revised parameterization for gaseous dry deposition in air-quality models. Atmos.
 Chem. Phys., 3(2), 2067-2082, 2003.
- Zhang, Y., Hong, Z., Chen, J., Xu, L., Hong, Y., Li, M., Hao, H., Chen, Y., Qiu, Y., Wu, X., Li, J.-R., Tong, L., and
 Xiao, H.: Impact of control measures and typhoon weather on characteristics and formation of PM_{2.5} during the
- 662 2016 G20 summit in China, Atmos. Environ., 224, 117312, 10.1016/j.atmosenv.2020.117312, 2020a.
- Zhang, Y., Xu, L., Zhuang, M., Zhao, G., Chen, Y., Tong, L., Yang, C., Xiao, H., Chen, J., Wu, X., Hong, Y., Li,
 M., Bian, Y., and Chen, Y.: Chemical composition and sources of submicron aerosol in a coastal city of China:
 Results from the 2017 BRICS summit study, Sci Total Environ, 741, 140470, 10.1016/j.scitotenv.2020.140470,
- 666 2020b.
- Zhang, Y., Xue, L., Carter, W., Pei, C., and Wang, W.: Development of Ozone Reactivity Scales for Volatile
 Organic Compounds in a Chinese Megacity, Atmos. Chem. Phys., 10.5194/acp-2021-44, 2021
- Chen Zhu, J., Wang, S., Wang, H., Jing, S., Lou, S., Saiz-Lopez, A., and Zhou, B.: Observationally constrained modeling
- of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China, Atmos. Chem. Phys., 20, 1217-
- 671 1232, 10.5194/acp-20-1217-2020, 2020.

672